If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 8.2x2 + 1341x = 40000 Reorder the terms: 1341x + 8.2x2 = 40000 Solving 1341x + 8.2x2 = 40000 Solving for variable 'x'. Reorder the terms: -40000 + 1341x + 8.2x2 = 40000 + -40000 Combine like terms: 40000 + -40000 = 0 -40000 + 1341x + 8.2x2 = 0 Begin completing the square. Divide all terms by 8.2 the coefficient of the squared term: Divide each side by '8.2'. -4878.04878 + 163.5365854x + x2 = 0 Move the constant term to the right: Add '4878.04878' to each side of the equation. -4878.04878 + 163.5365854x + 4878.04878 + x2 = 0 + 4878.04878 Reorder the terms: -4878.04878 + 4878.04878 + 163.5365854x + x2 = 0 + 4878.04878 Combine like terms: -4878.04878 + 4878.04878 = 0.00000 0.00000 + 163.5365854x + x2 = 0 + 4878.04878 163.5365854x + x2 = 0 + 4878.04878 Combine like terms: 0 + 4878.04878 = 4878.04878 163.5365854x + x2 = 4878.04878 The x term is 163.5365854x. Take half its coefficient (81.7682927). Square it (6686.053691) and add it to both sides. Add '6686.053691' to each side of the equation. 163.5365854x + 6686.053691 + x2 = 4878.04878 + 6686.053691 Reorder the terms: 6686.053691 + 163.5365854x + x2 = 4878.04878 + 6686.053691 Combine like terms: 4878.04878 + 6686.053691 = 11564.102471 6686.053691 + 163.5365854x + x2 = 11564.102471 Factor a perfect square on the left side: (x + 81.7682927)(x + 81.7682927) = 11564.102471 Calculate the square root of the right side: 107.536516919 Break this problem into two subproblems by setting (x + 81.7682927) equal to 107.536516919 and -107.536516919.Subproblem 1
x + 81.7682927 = 107.536516919 Simplifying x + 81.7682927 = 107.536516919 Reorder the terms: 81.7682927 + x = 107.536516919 Solving 81.7682927 + x = 107.536516919 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + x = 107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + x = 107.536516919 + -81.7682927 x = 107.536516919 + -81.7682927 Combine like terms: 107.536516919 + -81.7682927 = 25.768224219 x = 25.768224219 Simplifying x = 25.768224219Subproblem 2
x + 81.7682927 = -107.536516919 Simplifying x + 81.7682927 = -107.536516919 Reorder the terms: 81.7682927 + x = -107.536516919 Solving 81.7682927 + x = -107.536516919 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + x = -107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + x = -107.536516919 + -81.7682927 x = -107.536516919 + -81.7682927 Combine like terms: -107.536516919 + -81.7682927 = -189.304809619 x = -189.304809619 Simplifying x = -189.304809619Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.768224219, -189.304809619}
| 7(x+2)-1=48 | | -5x/7+16=4 | | n-4-27=38 | | 5-0*3+9/3= | | 8(2x-7)= | | 0=-16t^2+30t+78 | | t=947*5+17086 | | y=-4sin(4x)+2 | | 21947=974x+17086 | | t=974x+17086 | | 2p^2-17p+8=0 | | 4b^2+2b-42=0 | | 3x+18z=90 | | -8.75z+12.5=12.5 | | 3y+0.4=-0.2 | | 3x=18z | | 2(x+2)=54-3(x+1) | | 2(x+7)=4(2)+3(x-6) | | 2.1k+5.6=20.2 | | 0=-4.9t^2+24.5t-19.6 | | 12x+84=24+(12x-72) | | 5-7m+0m=11 | | 0=-4.9t^2+24.5-19.6 | | 3x^2+22-85=0 | | 12x+84=24+12x-72 | | 20x-15y=300 | | 11x=5x-18 | | 3/4=j=1/2 | | x/9=x/2-7 | | x^2-10x+25=-1 | | 2(4x-6)=68 | | 0.36x+2.2=5 |